If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+44x+20=0
a = 2; b = 44; c = +20;
Δ = b2-4ac
Δ = 442-4·2·20
Δ = 1776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1776}=\sqrt{16*111}=\sqrt{16}*\sqrt{111}=4\sqrt{111}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{111}}{2*2}=\frac{-44-4\sqrt{111}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{111}}{2*2}=\frac{-44+4\sqrt{111}}{4} $
| 9(9+k)=84 | | 2=y4−1 | | 6x=20/5=x+5 | | 4y/2+3=2/5 | | 5(2b+6)b=4 | | 3+6x=–15 | | (l-1)^2=l+1 | | 90+9x+1+23x-7=180 | | 2w+16=–42 | | -36=—9s | | 3(x-4)=-16+3x+2x | | 9x-(4x+3)=8x-48 | | 8e=17 | | r+20=9 | | 109+109+5x+14+3x+8=360 | | (5x+8)(6x+9)=0 | | x−2.81=5.68 | | 1/3a=79 | | z+13=7 | | 11x-23+4x-7+90=180 | | 2x/7+12=18 | | 12=5x=x+6 | | -74+x=66 | | 42=2(4+l) | | -74+x+66=180 | | –24=–32−k | | 72x=1,368 | | 2x-1+5x-1=180 | | 27=7n+20 | | 3x+8-5x=-2x+3 | | 3x-2+6x-7=180 | | 8x-8+5=4x+8+10 |